3 заметки с тегом

отдел продаж

Ищем «аномалии», включаем красные и зеленые «лампочки»

Переписываясь на днях с коллегой в Телеграме, в очередной раз увидел примерно вот такой отчет (сейчас просто нарисовал похожий) — сверху недели, сбоку, допустим, территориальные офисы продаж (там были месяцы и продажи по типам продукта, но для целей этой заметки это совершенно не имеет значения):

Воспользовавшись «Условным форматированием» в Экселе, замечаем, что на 6-й неделе в офисе «Академический» было 503 продажи. В общем, до этого момента ничего необычного, и так выжали 90% из данных, можно работать с отчетом и анализировать, что душе угодно.

Однако, есть несложная доработка, позволяющая выжать из данных еще лишние 5%.

Что, собственно, ищем

На картинке особо не видно, но чем ниже по списку, тем меньше в среднем продаж в каждом следующем офисе. То есть, будем считать, что офисы продаж все очень разные, и некорректно сравнивать «Академический» с «Якиманкой» — нехитрым вычислением получается, что «Академический» в среднем делал 242 продажи в неделю, а «Якиманка» — всего 13. Предположим, что тому есть объективные причины, и никто и не требовал от всех офисов показывать одинаковые результаты.

И тогда можно задать себе вопрос: достаточно ли просто анализировать абсолютные показатели по нашим офисам? И не будет ли правильнее копнуть вглубь, и попробовать найти такие показатели, которые выбиваются из общей картины? Такие недели, которые были аномальными для данного офиса продаж.

Здесь и далее под «аномалией» я буду понимать такое значение продаж, которое слишком отличается от среднего по данном офису. Как в большую (и надо разобраться, как повторить этот результат) или в меньшую (проанализировать, как избежать неудачи в будущем) сторону.

Распределяем результаты офиса «Академический»

Изучив результаты продаж офиса «Академический» за прошедшие 43 недели, мы рассчитали, что в среднем они делают 241,5 продаж в неделю, при этом стандартное отклонение (SD) равно 86,3.

Напомню формулы:

=СРЗНАЧ(B2:AR2)
=СТАНДОТКЛОН.В(B2:AR2)

Можно, гипотетически, представить, что мы имеем возможность наблюдать за результатами офиса «Академический» 200 (sic!) лет, при условии, что все это время среднее и стандартное отклонение не меняются, т. е., грубо говоря, они работают, как работали. В этом случае, мы увидели бы распределение результатов продаж, близкое к нормальному:

Давайте даже еще раз перерисуем картинку. 2 290 недель из 10 000 они бы делали от 200 до 249 продаж в неделю:

Понимаете, к чему я клоню?

Если только допустить, что результаты продаж подчиняются законам нормального распределения (грубо говоря, равновероятно продать как чуть больше, так и чуть меньше среднего), существует некоторое разумное отклонение от среднего, в пределах которого было бы глупо всерьез говорить о «спаде продаж» или «невероятном успехе». Иными словами, бессмысленно считать «аномалией» то, что лежит в пределах разумного отклонения от среднего.

Остается сформулировать критерии «разумности» и научить отчет сигнализировать об «аномалиях».

Вспоминаем теорию

Если вкратце, то, допустив на минутку, что мы имеем дело с нормальным распределением, вычислив среднее значение и стандартное отклонение (SD), мы можем уверенно говорить о том, что 90% данных в отчете не будут выходить за границы ±1,645SD от среднего.

Применительно к офису «Академический» речь идет о том, что для 90% времени результаты их продаж будут лежать в диапазоне от 100 до 383, или 241,5±142,0. Поэтому до тех пор, пока цифры не вышли за пределы этих границ, мы не наблюдаем ничего необычного.

Сразу оговоримся: конечно, степень «необычности», или «аномалии», каждый определяет для себя сам. Для одних, подозрение могут вызывать показатели, выбивающиеся за рамки 80%-ной вероятности (±1,28SD), для других — терпимым будет отклонение в ±1,96SD, что соответствует 95%-й вероятности. Тогда, первые будут бить искать причины «аномалии» в 20% случаев, вторые — в 5%. Каждую пятую неделю но отчете у коммерческого директора первые будут объяснять, что произошло, и почему, тогда как вторые будут делать это раз в 4-5 месяцев.

Допущение о том, что продажи в территориальных офисах, число посетителей на сайте, количество рекламных звонков, клики по баннеру распределяются по закону нормального распределения, дало нам потрясающую возможность оценивать вероятность наступления «аномалии» — слишком сильного отклонения от среднего значения. Обратно, оно учит нас не бить тревогу там, где отклонение, хотя и есть, не является достаточно сильным, и делает, отчасти, бессмысленным анализ и разбор ситуаций, когда показатель отклоняется в пределах разумного.

Перекрашиваем отчет, включаем зеленые и красные «лампочки»

Теперь мы хотим переделать отчет о продажах в территориальных офисах таким образом, чтобы напротив подозрительно больших или подозрительно маленьких значений загорались бы зеленые и красные «лампочки».

Нам необходимо научить отчет «включать» наши «лампочки», если значение в ячейке становится больше или меньше границ 90%-го диапазона, т. е. в примерно 90% случаев ни одна из «лампочек» «загораться» не будет, в примерно 5% случаев будет «загораться» красная «лампочка», и еще в примерно 5% — зеленая.

Применительно к «Академическому», мы хотим выделять красным значения, меньшие чем 241,5-1,645*86,3, т. е., меньшие, чем 100, и мы ходим выделять зеленым значения, большие, чем 241,5+1,645*86,3, т. е., большие, чем 383.

Нам остается рассчитать границы включения «лампочек» по каждому из офисов продаж, рассчитав последовательно: среднее значение продаж, стандартное отклонение (SD), нижнюю границу 90%-го диапазона, верхнюю границу 90%-го диапазона.

Используемые формулы:

=СРЗНАЧ(B2:AR2)
=СТАНДОТКЛОН.В(B2:AR2)
=B2-1,645*C2
=B2+1,645*C2

У нас получилась следующая таблица, содержащая расчеты по нижним и верхним границам того, что мы далее будем считать «аномалией»:

Теперь, используя инструмент «Условное форматирование» — «Правило выделения ячеек» — «Меньше...»/«Больше...», последовательно для каждого из 17-ти офисов продаж настраиваем правила подсветки ячеек красным и зеленым, в зависимости от того, будет ли значение ниже нижней границы 90%-го диапазона, или выше верхней границы:

Дополнительно выставляем светло-серый цвет текста, чтобы подсвеченные «аномалии» были еще более заметны. Добавляем градиент от белого к светло-серому, чтобы сохранить первоначальную идею выделять большие значения более темной заливкой. Законченная таблица приобретает следующий вид:

Выводы

Используя идею о разбросе значений вокруг среднего в нормальном распределении, нам удалось доработать наш отчет о территориальных офисах таким образом, что мы не просто видим результаты, но и теперь отдельно включаем красные и зеленые «лампочки» для тех результатов, которые представляют интерес, как «аномалии» — маловероятно маленькие или маловероятно большие значения, определив уровень «аномалии» как все, что выходит за пределы 90% вероятности.

Качество звонков: сколько нужно прослушать

Распространенным инструментом оценки качества работы менеджеров отдела продаж является аудит качества телефонных звонков, «прослушка».

Предположим, вы задались целью не просто замерить качество телефонных звонков, но зафиксировать рост этого качества. Например, провели обучение (тренинг) менеджеров, либо предложили новую мотивацию за соблюдение стандартов качества, либо что-то еще.

Логично предположить, что рост качества в первом попавшемся, после тренинга, звонке, не будет однозначно свидетельствовать о росте качества в остальных звонках. Скорее всего, и второй удачный звонок тоже однозначно не подтвердит гипотезу, что качество выросло.

Таким образом, речь будет идти о том, что вам придется прослушать если не все, то, по крайней мере, достаточное число звонков после введенных вами изменений, и число звонков, которые необходимо будет прослушать, на самом деле, можно однозначно рассчитать.

Считаем размер выборки

На 15-й странице работы «Планирование размеров выборки для исследований в бихевиоризме» мне попался подходящий пример 2.4 и формула для расчета таких выборок:

В данном примере рассматривается изменение оценки ACT-теста по математике с 24,5 (дисперсия 8,2) до 26,0 баллов при α = 0,05 и мощности = 0,90.

Для удобства работы, я собрал приведенную формулу в Гугл-таблицах:
Калькулятор размера выборки

Вам остается скопировать файл, и можете подставлять нужные вам значения. Достоверность разумно выбирать от 80% до 95%, значение мощности — от 60% до 80%. Указываете средний балл оценки звонков до изменений, стандартное отклонение (SD) оценки звонков «до», и ожидаемый средний балл оценки звонков после изменений.

Верификация полученных результатов

Важно понимать, что, даже прослушав требуемое количество звонков «после», все равно необходимо проверять наличие статистически значимых различий через калькулятор А/Б-тестов.

См. также:

https://habr.com/ru/post/339798/
https://people.ucsc.edu/~dgbonett/docs/wrkshp/LectureNotes.pdf

Кадровые решения, или Повысить нельзя уволить

Проблему, которую помогает решить использование матстатистики, я бы обозначил как «Повысить нельзя уволить» — вот перед нами результаты работы нашего отдела продаж, и назревают вопросы по нашему новому менеджеру Сухонцеву.

У сотрудника подходит к концу испытательный срок, план по сделкам ему был выставлен как «16 сделок на 100 звонков», поскольку исторически коммерческий директор видел конверсию звонков в сделки на уровне 16,1%.

Сухонцев, хорошо зарекомендовав себя за прошедшие 2,5 месяца работы, имеет 89 звонков и всего 9 сделок, что дает конверсию 10,1%.

«Увольнять,» — решает коммерческий директор.

Внимание, вопрос: справедливо ли решение коммерческого директора? Достаточно ли прошло времени (накоплено данных), чтобы принимать такое кадровое решение? Учтен ли фактор «невезения», и не может ли быть так, что Сухонцев работает не хуже остальных менеджеров, имея, в действительности, конверсию порядка требуемых 16%, но стабильно сталкиваясь с форс-мажорами у клиентов (5 клиентов «отвалились»), «черной полосой» в своей жизни и неудачно вставшей Луной в третьем доме Тельца?

Бросаем игральные кости

Вспоминая пример с бросками монетки, для разнообразия, в этот раз будем бросать игральную кость с 6-ю гранями. Вероятность выкинуть «1» составляет 1/6, или примерно 16,7%.

Математическое ожидание для 89 бросков игральной кости составляет 89 * 1/6 = 14,8 «единичек» (и по столько же «двоек», «троек» и т. д.), но, очевидно, их может быть не только 14-15, но и 12, 17, или, даже, 20. А вот совсем их не быть практически не может (хотя, теоретически, вероятность этого не нулевая).

Работу Сухонцева можно представить как броски игральной кости, где требуемый результат — «единичка»-сделка — выпадает примерно на каждый шестой бросок. Примерно, потому что исторически наблюдаемся конверсия в сделки составляет (без учета работы Сухонцева) 380 сделок на 2361 звонков, или 380/2361 = 16,1%. Математическое ожидание от его 89 «бросков» (звонков) составляет 89 * 0,161 = 14,3 «единичек» (сделок), но, интуитивно понятно, что их может быть чуть больше или чуть меньше.

Если рассчитать (позже узнаем, как) точные вероятности «выпадения» определенного числа сделок на 89 звонков и вывести их на графике, то наиболее вероятное событие («математическое ожидание») в 14 сделок окажется в середине графика, остальные возможные варианты (13 и 15 сделок, 12 и 16 сделок, и т. п.) каждый раз становятся все менее и менее вероятны, из-за чего график приобретает форму колокола:

Сказать, что результат в 9 сделок совсем невероятен не получается — какой-никакой, но этот столбик тоже заметен, и даже имеет вероятность в 0,037. Т. е., в 1 случае из 27 он случается, что, может, и маловероятно, но не крайне маловероятно.

Осталось разобраться, как мы получили вероятность «в 1 случае из 27», и как это связать с кадровыми решениями в отделе продаж.

Считаем биномиальное распределение

И в Excel, и в Google Таблицах есть встроенная функция биномиального распределения. Она-то и даст нам ответ на вопрос, пора ли увольнять невезучего Сухонцева.

В ячейке напротив его конверсии в 10,1% посчитаем функцию:

=БИНОМРАСП(D7;C7;$E$11;1)

В данной функции указываем по порядку: значение числа успехов (сделок), значение числа попыток (звонков), значение вероятности успеха (конверсия 16,1%). Последний, 4-й параметр, указываем «1».

Что за 0,0763 мы получили? 0,0763 — это вероятность получить не более 9 сделок на 89 звонков при вероятности сделки 16,1%. Таким образом, это вероятность получить от 0 до 9 сделок включительно при данных параметрах. Обратно, 1-0,0763 = 0,9237 — это вероятность получить 10 и более сделок.

(Кстати, если 4-й параметр в функции поменять на «0», мы получим вероятность получить ровно 9 сделок).

Можно сказать, что, принимая сумму всех столбиков на графике за 1, сумма столбиков «0»-«9» равна 0,0763, или 7,63%. Как видим, гораздо более вероятно попасть в синюю часть колокола нормального распределения, чем в красную (92,37% против 7,63%).

Вывод: вероятность Сухонцеву, работая в действительности с конверсией 16,1%, случайно (возможна «черная полоса», помните?) получить не более 9 сделок из 89 звонков, равна 7,63%. Обратно, 92,37% вероятность того, что Сухонцев получил бы 10 и более сделок. Грубо говоря, 7,63% за то, что ему не повезло, а 92,37% за то, что одним невезением тут не обошлось, и, скорее всего, он работает с конверсией ниже 16,1%.

Таким образом, если для коммерческого директора уровня 90% уверенности достаточно, то Сухонцева можно увольнять с испытательного срока — менеджер, действительно, не выполняет план. Если же нужен уровень 95% уверенности, то данных пока недостаточно, и желательно понаблюдать чуть дальше.

Какой же уровень уверенности выбрать? Правильного ответа здесь не существует.

Если его выбрать слишком низким, то мы можем случайно уволить хороших менеджеров, зато не придется терять сделки, продолжая работать с плохими.

Если выбрать его слишком высоким, то слишком долго придется копить данные для принятия математически обоснованного решения об увольнении плохого менеджера, зато и меньше вероятность случайно уволить хорошего. По моему мнению, уровень 90% для описанного кейса оптимален. Сухонцева можно увольнять.

Постойте, а что с 19,7% Беляева?

Действительно, если существуют «плохие» менеджеры, для которых с вероятностью 92,37% конверсия ниже требуемых 16,1%, то, логично, могут существовать и «хорошие».

Наше внимание обратили на себя 19,7% конверсии Беляева. За полгода работы он сделал 56 сделок на 284 звонка, при прогнозируемых 0,161*284 = 46 сделках. Могло ли ему везти эти полгода? Могло ли быть так, что, работая в действительности как все, с конверсией 16,1%, он случайно получил больше сделок, чем прогнозировал коммерческий директор?

Функция биномиального распределения дает результат в 0,9563 — то есть, с вероятностью 95,63%, работая как все, он бы получил не более 56 сделок... но он и не сделал более 56 сделок! Он сделал ровно 56!

Доработаем функцию, пересчитав ее для 56-1 = 55 сделок:

Для 55 сделок результат получился 0,9402. То есть, с вероятностью 94,02% Беляев (работая с конверсией 16,1%) получил бы не более 55 сделок. Получается, вероятность получить более 55 сделок равна оставшимся 5,98%! Получается, наш Беляев попал в кусочек своего колокола распределения, только с другого конца, и вероятность попасть туда составляет всего около 6%.

Коммерческий директор уже решил, что, прежде чем принимать кадровые решения, он хочет быть уверен в результатах на 90%. Но в результатах Беляева он уверен на 94,02%! Значит, остается всего 5,98% на то, что Беляеву повезло.

Значит, либо ему так повезло, хотя он, в действительности, работает как все (с конверсией 16,1%) и недостоин большей зарплаты, либо, он работает с конверсией выше 16,1% и будет справедливо вознаградить его.

6% явно проигрывают 94%, поэтому, Беляев получает повышение.

 1 комментарий    75   2019   биномиальное   воронка продаж   МПП   отдел продаж